Journal of Applied Economic Research
ISSN 2712-7435
УДК 336.67
Отбор информативных показателей для оценки экономической безопасности российских компаний
Л.А. Буланов 1, А.В. Калина 1, 2, В.В. Криворотов 1
1 Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия
2 Институт экономики Уральского отделения РАН, г. Екатеринбург, Россия
Аннотация
Задача обеспечения экономической безопасности предприятий и компаний является одной из первоочередных в современных экономических и политических условиях. Центральное место в решении этой задачи является всесторонняя объективная оценка экономической безопасности компаний, в основе которой, как правило, лежит метод индикативного анализа. Это, в свою очередь, требует разработки и формирования состава индикаторов экономической безопасности, которое бы наиболее полно и качественно отражали состояние компаний как в текущий, так и перспективный периоды. Целью настоящей статьи является разработка алгоритма и его модельная реализация для отбора наиболее значимых показателей экономической безопасности предприятий и компаний, основанного на использовании технологий машинного обучения. Для реализации поставленной цели в работе исследуется интерпретируемая многоклассовая классификация крупных производственных компаний («плохие/нормальные/хорошие») по их финансовым коэффициентам с формированием целевых меток кластеризацией K-Means++ на реальном датасете за 2023 г. (2 249 наблюдений). Сопоставляются одномерные фильтры (ANOVA/η², one-vs-rest ROC-AUC, Mutual Information) и модельные важности SHAP для CatBoost; сравнение проводится через корреляцию рангов, пересечение топ-k и абляции с логлосс-оценкой на стратифицированной k-fold CV при строгом разделении train/val. Дополнительно оценивается компромисс «компактность vs точность» при k {5, 10, 15, 20, 30} и проверяется статистическая значимость различий (критерий Уилкоксона). Предложенный подход и его реализация для российских компаний выявили, что собственные оборотные средства являются основой для формирования и оценки наиболее значимых и информативных индикаторов экономической безопасности компании. При этом профили по классам показывают асимметричные, экономически согласованные границы: для «плохих» компаний решающим является дефицит оборотного капитала и низкая ликвидность; для «хороших» компаний – высокие быстрая/текущая ликвидность и покрытие; «нормальные» компании формируются как буфер при умеренных значениях и обслуживаемом долге. В качестве главного практического результата проведенного исследования можно выделить практические рекомендации по минимальному набору показателей и стратегии отбора признаков для мониторинга экономической безопасности и финансового состояния компаний и прикладной аналитики в этой области.
Ключевые слова
показатели экономической безопасности; машинное обучение; кросс-валидация; отбор признаков; ANOVA; ROC-AUC; Mutual Information; CatBoost; SHAP.
JEL classification
D22, G30, C45Список использованной литературы
1. Буланов Л.А., Калина А.В., Криворотов В.В. Кластеризация российских производственных компаний по показателям их финансового состояния с использованием технологий машинного обучения // Journal of Applied Economic Research. 2025. Т. 24, № 2. С. 584–621. https://doi.org/10.15826/vestnik.2025.24.2.020
2. Hauge J., Houtzager B., Hörmann A.J. The new economic nationalism: industrial policy and national security in the United States, China, and the European Union // Geoforum. 2025. Vol. 166. 104382. https://doi.org/10.1016/j.geoforum.2025.104382
3. Ahumada J.M. Bringing freedom back to developmentalism: industrialisation as national independence // Cambridge Journal of Economics. 2023. Vol. 47, Issue 6. Pp. 1037–1056. https://doi.org/10.1093/cje/bead030
4. Ghazouani T. Geopolitical, technological, and economic influences on U.S. energy security: A quantile-wavelet analysis // Journal of Environmental Management. 2025. Vol. 390. 126393. https://doi.org/10.1016/j.jenvman.2025.126393
5. Akusta E. The impacts of different types of globalization on energy security risk: Can globalization be a remedy for the energy security risk of OECD countries? // Energy. 2024. Vol. 313. 133787. https://doi.org/10.1016/j.energy.2024.133787
6. Yao L., Chang Y. Energy security in China: A quantitative analysis and policy implications // Energy Policy. 2014. Vol. 67. Pp. 595–604. https://doi.org/10.1016/j.enpol.2013.12.047
7. Kruyt B., van Vuuren D.P., de Vries H.J.M., Groenenberg H. Indicators for energy security // Energy Policy. 2009. Vol. 37, Issue 6. Pp. 2166–2181. https://doi.org/10.1016/j.enpol.2009.02.006
8. Löschel A., Moslener U., Rübbelke D.T.G. Indicators of energy security in industrialised countries // Energy Policy. 2009. Vol. 37, Issue 6. Pp. 2166–2181. https://doi.org/10.1016/j.enpol.2009.02.006
9. Ang B.W., Choong W.L., Ng T.S. Energy security: Definitions, dimensions and indexes // Renewable and Sustainable Energy Reviews. 2015. Vol. 42. Pp. 1077–1093. https://doi.org/10.1016/j.rser.2014.10.064
10. Abd El-Ghani S.S., Mansour T.G.I., Esleem S.A. The most important economic and social indicators of the challenges facing food security for the most important crops in Egypt // Environmental and Sustainability Indicators. 2025. Vol. 25. 100808. https://doi.org/10.1016/j.indic.2025.100808
11. Akinci1 O.S., Kumcu S.Y. Towards Resilient and Sustainable Food Systems: Integrating Agricultural Production Efficiency and Food Security // Archives des Sciences: A Multidisciplinary Journal. 2024. Vol. 74, Issue 1. Pp. 51–56. https://doi.org/10.62227/as/74106
12. Onwe J.C., Makuachukwu G. Ojide M.G., Subhan M., Forgenie D. Food security in Nigeria amidst globalization, economic expansion, and population growth: A wavelet coherence and QARDL analysis // Journal of Agriculture and Food Research. 2024. Vol. 18. 101413. https://doi.org/10.1016/j.jafr.2024.101413
13. Boiral O., Brotherton M.-C., Talbot D. Anticipating the unforeseeable? ESG risk management in mining companies // Resources Policy. 2025. Vol. 106. 105628. https://doi.org/10.1016/j.resourpol.2025.105628
14. Bertolotti A. Effectively managing risks in an ESG portfolio // Journal of Risk Management in Financial Institutions. 2020. Vol. 13, Issue 3. Pp. 202–211. https://doi.org/10.69554/TQVN4497
15. Razak S.E.A., Mustapha M., Shah S.M., Abu Kasim N.A. Sustainability risk management: Are Malaysian companies ready? // Heliyon. 2024. Vol. 10, Issue 3. e24681. https://doi.org/10.1016/j.heliyon.2024.e24681
16. Belás J., Mišanková M., Schönfeld J., Gavurová B. Credit risk management: financial safety and sustainability aspects // Journal of Security and Sustainability Issues. 2017. Vol. 7, No. 1. Pp. 79–93. http://dx.doi.org/10.9770/jssi.2017.6.1(7)
17. Altman E.I., Sabato G., Wilson N. The Value of Non-Financial Information in Small and Medium-Sized Enterprise Risk Management // Journal of Credit Risk. 2010. Vol. 6, No. 2. Pp. 95–127. https://doi.org/10.21314/JCR.2010.110
18. Behr P. Guttler A. Credit Risk Assessment and Relationship Lending: An Empirical Analysis of German Small and Medium-Sized Enterprises // Journal of Small Business Management. 2017. Vol. 45, Issue 2. Pp. 194–213. https://doi.org/10.1111/j.1540-627X.2007.00209.x
19. Pylypenko K.A., Babiy I.V., Volkova N.V., Feofanov L.K., Kashchena N.B. Structuring economic security of the organization // Journal of Security and Sustainability Issues. 2019. Vol. 9, No. 1. Pp. 27–38. http://doi.org/10.9770/jssi.2019.9.1(3)
20. Ianioglo A. Comprehensive system of ensuring the economic security of enterprise // Agricultural and Resource Economics: International Scientific E-Journal. 2015. Vol. 1, No. 1. Pp. 69–79. https://doi.org/10.51599/are.2015.01.01.07
21. Ianioglo A., Polajeva T. Innovative component of economic security of enterprises: A case of the Republic of Moldova // Journal of Business Economics and Management. 2017. Vol. 18, No. 6. Pp. 1228–1242. https://doi.org/10.3846/16111699.2017.1405365
22. Ereshko F., Karanina E. A systematic approach to the diagnosis of economic security of a transport enterprises // Transportation Research Procedia. 2022. Vol. 63. Pp. 322–328. https://doi.org/10.1016/j.trpro.2022.06.019
23. Ryazanova O., Timin A. Assessment of the state, threats and risks of the economic security system of motor transport enterprises of the Kirov region // Transportation Research Procedia. 2022. Vol. 63. Pp. 1121–1130. https://doi.org/10.1016/j.trpro.2022.06.115
24. Prievozník P., Strelcová S., Sventeková E. Economic Security of Public Transport Provider in a Three-Dimensional Model // Transportation Research Procedia. 2021. Vol. 55. Pp. 1570–1577. https://doi.org/10.1016/j.trpro.2021.07.146
25. Beaver W.H. Financial Ratios As Predictors Of Failure // Journal of Accounting Research. 1966. Vol. 4. Pp. 71–111. https://doi.org/10.2307/2490171
26. Altman E.I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy // Journal of Finance. 1968. Vol. 23, No. 4. Pp. 589–609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
27. Ohlson J.A. Financial Ratios and the Probabilistic Prediction of Bankruptcy // Journal of Accounting Research. 1980. Vol. 18, No. 1. Pp. 109–131. https://doi.org/10.2307/2490395
28. Shumway T. Forecasting Bankruptcy More Accurately: A Simple Hazard Model // Journal of Business. 2001. Vol. 74, No. 1. Рр. 101–124. https://doi.org/10.1086/209665
29. Lessmann S., Baesens B., Seow H.-V., Thomas L.C. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research // European Journal of Operational Research. 2015. Vol. 247. Рр. 124–136. https://doi.org/10.1016/j.ejor.2015.05.030
30. Saisana M., Saltelli A., Tarantola S. Uncertainty and Sensitivity Analysis Techniques as Tools for the Assessment of Composite Indicators // Journal of the Royal Statistical Society Series A: Statistics in Society. 2005. Vol. 168, Issue 2. Рр. 307–323. https://doi.org/10.1111/j.1467-985X.2005.00350.x
31. Altman E.I., Iwanicz-Drozdowska M., Laitinen E.K., Suvas A. Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model // Journal of International Financial Management & Accounting. 2017. Vol. 28, Issue 2. Рp. 131–171. https://doi.org/10.1111/jifm.12053
32. Guyon I., Elisseeff A. An introduction to variable and feature selection // Journal of Machine Learning Research. 2003. Vol. 3. Pр. 1157–1182. https://doi.org/10.1162/153244303322753616
33. Saeys Y., Inza I., Larranaga P. A review of feature selection techniques in bioinformatics // Bioinformatics. 2007. Vol. 23, Issue 19. Pр. 2507–2517. https://doi.org/10.1093/bioinformatics/btm344
34. Li J., Cheng K., Wang S., Morstatter F., Trevino R.P., Tang J., Liu H. Feature selection: A data perspective // ACM Computing Surveys (CSUR). 2017. Vol. 50, Issue 6. 94. https://doi.org/10.1145/3136625
35. Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis // Journal of the American Statistical Association. 1952. Vol. 47, Issue 260. Pp. 583–621. https://doi.org/10.1080/01621459.1952.10483441
36. Hand D.J., Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems // Machine Learning. 2001. Vol. 45. Рр. 171–186. https://doi.org/10.1023/A:1010920819831
37. Fawcett T. An introduction to ROC analysis // Pattern Recognition Letters. 2006. Vol. 27, Issue 8. Рр. 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
38. Bademlioglu A.H., Karatas O.B., Sokmen K.F., Yuruklu E. Thermal management and fin characteristic optimization of an electronic power supply utilizing Taguchi and ANOVA methods // Applied Thermal Engineering. 2024. Vol. 252. 123671. https://doi.org/10.1016/j.applthermaleng.2024.123671
39. AravindKumar P., Sivaranjini S., JyothirGanesh P., Garlapati C. New solubility model to correlate solubility of anticancer drugs in supercritical carbon dioxide and evaluation with Kruskal–Wallis test // Fluid Phase Equilibria. 2024. Vol. 582. 114099. https://doi.org/10.1016/j.fluid.2024.114099
40. Kraskov A., Stögbauer H., Grassberger P. Estimating mutual information // Physical Review E-Statistical, Nonlinear, and Soft Matter Physics. 2004. Vol. 69. 066138. https://doi.org/10.1103/PhysRevE.69.066138
41. Ross B.C. Mutual information between discrete and continuous data sets // PloS One. 2014. Vol. 9, Issue 2. e87357. https://doi.org/10.1371/journal.pone.0087357
42. Zhang X., Tian R., Xu H., Liu X, C. Soares C.G. Ship manoeuvring model identification using mutual information clustering with stepwise regression structural optimisation under small-sample constraints // Ocean Engineering. 2025. Vol. 341, Part 2. 122594. https://doi.org/10.1016/j.oceaneng.2025.122594
43. Stuart T., Butler A., Hoffman P., Hafemeister C., Papalexi E., Mauck W.M., Hao Y., Stoeckius M., Smibert P., Satija R. Comprehensive Integration of Single-Cell Data // Cell. 2019. Volume 177, Issue 7. Pp. 1888–1902. https://doi.org/10.1016/j.cell.2019.05.031
44. Lundberg S.M., Erion G., Chen H., DeGrave A., Prutkin J.M., Nair B., Katz R., Himmelfarb J., Bansal N., Lee S.-I. From local explanations to global understanding with explainable AI for trees // Nature Machine Intelligence. 2020. Vol. 2. Pp. 56–67. https://doi.org/10.1038/s42256-019-0138-9
45. Štrumbelj E., Kononenko I. Explaining prediction models and individual predictions with feature contributions // Knowledge and Information Systems. 2014. Vol. 41. Pp. 647–665. https://doi.org/10.1007/s10115-013-0679-x
46. Lundberg S.M., Nair B., Vavilala M.S., Horibe M., Eisses M.J., Adams T., Liston D.E., Low D.K.-W., Newman S.-F., Kim J., Lee S.-I. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery // Nature Biomedical Engineering. 2018. Vol. 2. Pp. 749–760. https://doi.org/10.1038/s41551-018-0304-0
47. Bussmann N., Giudici P., Marinelli D., Papenbrock J. Explainable machine learning in credit risk management // Computational Economics. 2021. Vol. 57. Pp. 203–216. https://doi.org/10.1007/s10614-020-10042-0
48. Aas K., Jullum M., Løland A. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values // Artificial Intelligence. 2021. Vol. 298. 103502. https://doi.org/10.1016/j.artint.2021.103502
49. Covert I., Lundberg S., Lee S.-I. Explaining by removing: A unified framework for model explanation // Journal of Machine Learning Research. 2021. Vol. 22, Issue 209. P. 1–90. https://doi.org/10.48550/arXiv.2011.14878
50. Oladimeji O.O., Ayaz H., McLoughlin I., Unnikrishnan S. Mutual information-based radiomic feature selection with SHAP explainability for breast cancer diagnosis // Results in Engineering. 2024. Vol. 24. 103071. https://doi.org/10.1016/j.rineng.2024.103071
51. Zhou C., Wang Z., Wang X., Guo R., Zhang Z., Xiang X., Wu Y. Deciphering the nonlinear and synergistic role of building energy variables in shaping carbon emissions: A LightGBM-SHAP framework in office buildings // Building and Environment. 2024. Vol. 266. 112035. https://doi.org/10.1016/j.buildenv.2024.112035
52. Friedman J.H. Greedy function approximation: A gradient boosting machine // The Annals of Statistics. 2001. Vol. 29, No. 5. Pp. 1189–1232. https://doi.org/10.1214/aos/1013203451
53. Chen T., Guestrin C. Xgboost: A scalable tree boosting system // KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016. Pp. 785–794. https://doi.org/10.1145/2939672.2939785
54. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y. Lightgbm: A highly efficient gradient boosting decision tree // NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. Edited by U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus. New York: Curran Associates Inc., 2017. Pp. 3149–3157. https://dl.acm.org/doi/10.5555/3294996.3295074
55. Prokhorenkova L., Gusev G., Vorobev A., Dorogush A.V., Gulin A. CatBoost: Unbiased boosting with categorical features // Advances in Neural Information Processing Systems. Vol. 31 (NeurIPS 2018). Edited by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett. Neural Information Processing Systems Foundation, 2018. Pp. 6638–6648. https://doi.org/10.48550/arXiv.1706.09516
56. Zhang Y., Ren W., Lei J., Sun L., Mi Y., Chen Y. Predicting the compressive strength of high-performance concrete via the DR-CatBoost model // Case Studies in Construction Materials. 2024. Vol. 21. e03990. https://doi.org/10.1016/j.cscm.2024.e03990
57. Arif M., Ahmed S., Ge F., Kabir M., Khan Y.D., Yu D.-J., Thafar M. StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach // Chemometrics and Intelligent Laboratory Systems. 2022. Vol. 220. P. 104458. https://doi.org/10.1016/j.chemolab.2021.104458
58. Guyon I., Weston J., Barnhill S., Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines // Machine Learning. 2002. Vol. 46. Pp. 389–422. https://doi.org/10.1023/A:1012487302797
59. Whitney A.W. A Direct Method of Nonparametric Measurement Selection // IEEE Transactions on Computers. 1971. Vol. 20, Issue 9. Pp. 1100–1103. https://doi.org/10.1109/T-C.1971.22341
60. Pudil P., Novovičová J., Kittler J. Floating search methods in feature selection // Pattern Recognition Letters. 1994. Vol. 15, Issue 11. Pp. 1119–1125. https://doi.org/10.1016/0167-8655(94)90127-9
61. Kursa M.B., Rudnicki W.R. Feature selection with the Boruta package // Journal of Statistical Software. 2010. Vol. 36, Issue 11. Pp. 1–13. https://doi.org/10.18637/jss.v036.i11
62. Tibshirani R. Regression shrinkage and selection via the lasso // Journal of the Royal Statistical Society: Series B (Methodological). 1996. Vol. 58, Issue 1. Pp. 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
63. Zou H., Hastie T. Addendum: Regularization and Variable Selection Via the Elastic Net // Journal of the Royal Statistical Society Series B: Statistical Methodology. 2005. Vol. 67, Issue 5. P. 768. https://doi.org/10.1111/j.1467-9868.2005.00527.x
64. Meinshausen N., Bühlmann P. Stability selection // Journal of the Royal Statistical Society Series B: Statistical Methodology. 2010. Vol. 72, Issue 4. Pp. 417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x
65. Varma S., Simon R. Bias in error estimation when using cross-validation for model selection // BMC Bioinformatics. 2006. Vol. 7. 91. https://doi.org/10.1186/1471-2105-7-91
66. Cawley G.C., Talbot N.L. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation // The Journal of Machine Learning Research. 2010. Vol. 11. Pp. 2079–2107. https://doi.org/10.5555/1756006.1859921
67. Wilcoxon F. Individual Comparisons by Ranking Methods // Biometrics Bulletin. 1945. Vol. 1, No. 6. Pp. 80–83. https://doi.org/10.2307/3001968
68. Understanding Robust and Exploratory Data Analysis. Edited by D.C. Hoaglin, F. Mosteller, J.W. Tukey. New York: Wiley, 1983. 447 p. URL: https://archive.org/details/understandingrob0000unse/page/n1/mode/1up
Информация об авторах
Буланов Лев Алексеевич
Аспирант кафедры экономической безопасности производственных комплексов Уральского федерального университета имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия (620002, г. Екатеринбург, ул. Мира, 19); ORCID https://orcid.org/0009-0001-0242-0127 e-mail: levbulanov2013@yandex.ru
Калина Алексей Владимирович
Кандидат технических наук, доцент кафедры экономической безопасности производственных комплексов Уральского федерального университета имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия (620002, г. Екатеринбург, ул. Мира, 19), старший научный сотрудник Центра экономической безопасности Института экономики Уральского отделения РАН, г. Екатеринбург, Россия (620014, г. Екатеринбург, ул. Московская, 29); ORCID https://orcid.org/0000-0003-0376-2505 e-mail: alexkalina74@yandex.ru
Криворотов Вадим Васильевич
Доктор экономических наук, профессор, заведующий кафедрой экономической безопасности производственных комплексов Уральского федерального университета имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия (620002, г. Екатеринбург, ул. Мира, 19); ORCID https://orcid.org/0000-0002-7066-0325 e-mail: v_krivorotov@mail.ru
Для цитирования
Буланов Л.А., Калина А.В., Криворотов В.В. Отбор информативных показателей для оценки экономической безопасности российских компаний // Journal of Applied Economic Research. 2025. Т. 24, № 4. С. 1371-1415. https://doi.org/10.15826/vestnik.2025.24.4.045
Информация о статье
Дата поступления 2 сентября 2025 г.; дата поступления после рецензирования 9 октября 2025 г.; дата принятия к печати 23 октября 2025 г.
DOI: https://doi.org/10.15826/vestnik.2025.24.4.045
Скачать полный текст статьи:
~2 МБ, *.pdf
(Размещен
10.12.2025)
Создано / Изменено: 18 августа 2015 / 14 ноября 2024
© ФГАОУ ВО «УрФУ имени первого Президента России Б.Н. Ельцина»
Увидели ошибку?
выделите фрагмент и нажмите:
Ctrl + Enter
Дизайн портала: Artsofte
©Ural Federal University named the first President of Russia B.N.Yeltsin (Website)